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Introduction
In this document, we describe the iterative exponential curve, a specific implementation of
a decaying exponential. This curve has many applications, such as interactive computer
programs where some sort of interpolation is needed. We will also look at its mathematical
underpinnings, featuring a simple introduction to generating functions. We assume the
reader is familiar with basic programming and high school level mathematics.

The Curve
Basic Structure

The curve we’re about to describe comes about in situations where we have some value
which we iteratively update:

v += (d-v)*r;

Here, v is a variable storing the current value, d is the destination value and r is some
number (often between 0 and 1) specifying the rate. We can call vn the value after n
steps, with vn = v0 if n < 0 (so that v0 represents the ‘baseline’ value). Below is a plot
when v0 = 1, d = 4, r = 0.4:
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Here we can see both the actual computed values (blue circles), as well as the underlying
continuous curve (which we’ll derive later). As we can see, the values look like samples
of a flipped decaying exponential curve, which starts at v0 and approaches d. Before
we’ll proof this, we’ll take a look at calculating r.

Timestep-Dependence

Something that’s immediately obvious from the above implementation, is the timestep-
dependence when viewed as a function of time. That is, if we perform the above update
logic twice as many times per second, the resulting curve will be squished by a factor of
2. In the following graph, the red curve is the result of doing exactly that.
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Do note that the x-axis and y-axis now represent time and the continuous value re-
spectively, so that the two curves can be compared. This timestep-dependence is often
undesirable. One might attempt to fix it as follows:

v += (d-v)*r*dt;

Here, dt represents the deltatime, i.e. the time between each consecutive step. However,
this doesn’t work, as the following graph shows, where the blue curve has dt = 1 and the
red curve has dt = 0.5:
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In order to really understand what’s going on and how to fix it, we’ll have to analyse the
update recurrence more rigorously.

Mathematical Analysis
Update Recurrence

Let’s first look at the simplest situation: v0 = 0 and d = 1. Once we’ve solved this case,
we’ll be able to transform it into all other cases. Mathematically, the corresponding
recurrence is now:

v0 = 0
vn = vn−1 + (1 − vn−1) · r if n > 0

From now on, we’ll only focus on n ≥ 0, since n < 0 is trivial. The recursion simply
states what we did in code, and can be rewritten as:

v0 = 0
vn = r + (1 − r) · vn−1 if n > 0

(1)

This slightly different form will help us later.
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Generating Functions

In order to solve this recurrence (i.e. find a formula for vn that isn’t defined in terms of
itself, called the direct formula), we must use a technique called generating functions. The
main idea behind generating functions is to view a sequence of numbers as a formal power
series, which basically means an (infinite) polynomial we’re never actually evaluating and
thus can manipulate more freely. If we’re given a sequence of numbers, say (a0, a1, a2, . . . ),
the corresponding generating function is:

A(z) = a0 + a1z + a2z2 + · · · =
∞∑

n=0
anzn

If the sequence is finite, say it contains N numbers, we can simply interpret an = 0 for
n ≥ N , in which case:

A(z) =
N−1∑
n=0

anzn

Now let’s look at a simple example: the sequence of infinitely many 1’s. The corresponding
generating function is:

Z(z) =
∞∑

n=0
zn

Normally we wouldn’t be able to simplify this in general, however, because z is not
actually a number (it’s an indeterminate), we can use the following trick:

z · Z(z) =
∞∑

n=0
zn+1 =

∞∑
n=1

zn = Z(z) − z0 = Z(z) − 1

This implies:
(z − 1)Z(z) = −1

Which finally implies:

Z(z) =
∞∑

n=0
zn = 1

1 − z
(2)

This is a very important identity! It’s worth noting what exactly happened: the
summation from n = 0 to ∞ really means that we’re summing over all n ≥ 0. When we
changed the zn+1 to zn, we did so by substituting n with n − 1, so that zn+1 becomes
zn−1+1 = zn. By doing so, the summation condition turns into n − 1 ≥ 0 and thus n ≥ 1.
Now, of course, we haven’t formally justified why we can just do these things. However,
that’s not the aim of this document, and is best left for another time.

Solving the Recurrence

While there are many more interesting things to learn about generating functions, we now
already know enough to solve the recurrence. Indeed, let’s take a look at the generating
function of our values vn:

V (z) =
∞∑

n=0
vnzn (3)
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We need two key observations: (a) v0 = 0, so we can ignore the first term, and (b) we
can substitute recurrence (1) inside the summation:

V (z) =
∞∑

n=1
vnzn =

∞∑
n=1

(r + (1 − r)vn−1)zn

Let’s put on the algebraic autopilot, which starts off splitting the sum:

V (z) =
∞∑

n=1
rzn +

∞∑
n=1

(1 − r)vn−1zn

= rz
∞∑

n=1
zn−1 + (1 − r)

∞∑
n=0

vnzn+1

= rz
∞∑

n=0
zn + (1 − r)z

∞∑
n=0

vnzn

= rz

1 − z
+ (1 − r)zV (z)

In the last step, we used equation (2). Now V (z) is expressed in terms of itself, which
kind of makes sense, since vn is recursively defined! This can now be written as:

(1 − (1 − r)z)V (z) = rz

1 − z

And therefore:
V (z) = rz

(1 − z)(1 − (1 − r)z)
All right, but how does this help us? Well, we can use the well-known technique of
partial fraction decomposition:

V (z) = A

1 − z
+ B

1 − (1 − r)z = A(1 − (1 − r)z) + B(1 − z)
(1 − z)(1 − (1 − r)z) = A + B + z(−(1 − r)A − B)

(1 − z)(1 − (1 − r)z)

Remember now that we’re not solving for z, but rather this is an identity, so we must
have:

A + B = 0
−(1 − r)A − B = r

The solution is A = 1, B = −1 (which is easily checked), so:

V (z) = 1
1 − z

− 1
1 − (1 − r)z

We know that the first term is just Z(z) =
∞∑

n=0
zn by equation (2), but what about the

second term? Well, this is just −Z((1 − r)z) and therefore:

V (z) =
∞∑

n=0
zn −

∞∑
n=0

((1 − r)z)n =
∞∑

n=0
(1 − (1 − r)n)zn

Comparing this to our initial definition of V (z) (equation (3)), we can at last conclude:

vn = 1 − (1 − r)n (4)
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Basic Transformations

We’ve now found a direct formula for vn when v0 = 0 and d = 1 (the ‘standard form’).
In this section, we’ll say that c is a curve with parameters c0 and dc, so the standard
form is v with v0 = 0 and dv = 1.

The next obvious question is: what if we allow for arbitrary parameters? Well,
let w be the curve with arbitrary w0 and dw. Using induction, we will show that
wn = w0 + (dw − w0)vn, which will yield us the general formula for values of the iterative
exponential curve.

For n = 0, the equation clearly holds. Assume it holds for some n ≥ 0, i.e. wn =
w0 + (dw − w0)vn. Combining this with the recurrence wn+1 = wn + (dw − wn)r gets us:

wn+1 = w0 + (dw − w0)vn + (dw − w0 − (dw − w0)vn)r
= w0 + (dw − w0)(vn + (1 − vn)r) = w0 + (dw − w0)vn+1

Through induction, the equation holds for all integers n ≥ 0. By equation (4), we can
conclude:

wn = w0 + (d − w0)(1 − (1 − r)n)
Ergo: every iterative exponential curve is a shifted and scaled version of the ‘standard
form’. In particular, this means curves with the same base value and destination
but different rates can be compared by just comparing the standard forms with the
corresponding rates, which is exactly how we can solve the timestep-dependence.

Applying Our Results
Timestep-Independence

As we just explained, we can solve the timestep-dependence by solving it for the particular
case when v0 = 0 and d = 1. Let’s say dt is the timestep, then t = n · dt and n = t/dt.
Using equation (4), we can express the continuous value as:

v(t) = 1 − (1 − r)t/dt

Let’s say we fix the value at t = τ , then we can solve for r:

v(τ) = 1 − (1 − r)τ/dt

(1 − r)τ/dt = 1 − v(τ)
1 − r = (1 − v(τ))dt/τ

r = 1 − (1 − v(τ))dt/τ

That’s it! Everytime dt changes, we just recompute r. For example, if τ specifies the
time to reach the half-point of the curve (i.e. v(τ) = 0.5), then:

r = 1 − (0.5)dt/τ = 1 − 2−dt/τ (5)

This also works if the timestep changes mid-curve, since the recursive definition of v can
be interpreted as if a new curve starts every frame with the same d but a different v0.
In the general case, formula (5) computes the r such that v(τ) = v0 + 0.5(d − v0), i.e.
‘halfway’ to the destination. Therefore, the code in a realtime frame-based program such
as a game might look like:
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// beginning of frame: compute r
r = 1 - pow(2, -dt/t_half);

// later in frame: update v
v += (d-v)*r;

Here t_half is just τ when v(τ) is the halfway point. The graph below shows the
computed values for v0 = 1, d = 4, τ = 1.2 for dt = 0.5 (blue) and dt = 0.8 (red):
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As we can see, both values lie on the same underlying continuous curve. We’ve fixed the
time-dependence.

Self-Correction

One of the nice properties of this curve, is that it is self-correcting, which means that we
can change any value at any point in time, and the curve will adapt. In particular, we
can change v itself, or d, or even r (via τ).

One example where v might change, is if we have some UI where the user can drag
2D objects, which snap back to their original position when let go. In that case, d is
the original position and we set v equal to the mouse position while dragging. While we
aren’t dragging, we execute the iterative update code. (In this case, v and d are actually
2D vectors, but we’d just implement the curve on both components.)

In other cases, d might change, for instance if we’re animating a health-bar in a
videogame. v could then represent the ‘animated health’, while d is the ‘actual health’.
Upon tacking damage, d gets decreased by the amount we take damage, but upon healing,
d gets increased by how much we heal. The result might look something like this:

t
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In this graph, we see another nice feature of this implementation: the initial curve is
very sharp, which gives an immediate sense of feedback, while the later parts are smooth,
which gives the feeling of a gentle ‘landing’.
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Approaching d

Let’s take a look at the parameter r. We can confine r to be 0 < r ≤ 1, since other
values don’t really make sense (when r = 0, the value never changes). When r = 1, the
change is instantaneous, which can actually be very useful in situations where we want
to ‘toggle’ interpolation. For instance, let’s say we are animating for a UI, we might do:

if (do_animate) r = 1 - pow(2, -dt/t_half);
else r = 1;

// later
v += (d-v)*r;

This would allow us to simply toggle animations on or off, for instance via a settings
menu. Now, if instead 0 < r < 1, the value 1 (in general: d) is never exactly reached,
since for all n, we have 0 ≤ 1 − (1 − r)n < 1. However, we quickly converge to a given
threshold, which is actually enough. For instance, let’s calculate how long it takes to fall
within 0.1% error, which means vn ≥ 0.999:

1 − (1 − r)n ≥ 0.999
(1 − r)n ≤ 0.001

n ≥ log(0.001)/ log(1 − r)

Usual parameters might be dt = 1/60 and r = 1 − 2−(1/60)/0.1 = 0.109..., so that it takes
0.1 seconds to reach halfway, which gives a snappy feel if used for animation-type effects.
This gives: n ≥ log(0.001)/ log(1 − 0.109...) = 59.794.... Because n must be integer, the
result is t = n · dt = 60/60 = 1, i.e. after 1 second we are within 0.1% error. This might
seem a lot, given that we are already halfway at 0.1 seconds, but it’s really not, since
most people won’t percieve 0.1% error and in most use cases, 1 second isn’t a lot of time.

If these results are still undesirable, they might be mitigated even further by other
techniques, such as clamping, an example of which is given below.
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The blue curve has 0 < r < 1 as usual, however the red curve has r < 0. Normally, this
would result in an unbounded curve, but because we clamp it anyway, this is actually a
viable strategy for creating curves with a smooth start and hard landing, if that’s needed.
The implementation gets slightly more complex though, as the choice of min or max for
the clamping depends on whether the destination is below or above the curve.
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Conclusion
In conclusion: we’ve developed and analysed the very versatile iterative exponential curve
and we’ve seen that it has some nice properties. In many situations, this curve is an
excellent choice for responsive, yet smooth feeling animations or other interpolations.
Although the interpolation destination is never exactly reached, it’s hardly ever a problem
and if it is, can be mitigated by simple methods.

Addenda
1

It’s a fun exercise to use generating functions to solve the Fibonacci recurrence given by:

f0 = 0
f1 = 1
fn = fn−1 + fn−2 if n > 1

2

In the field of Digital Signal Processing (DSP), there is the so-called z-transform, whose
definition is very similiar to the way we defined generating functions: given discrete-time
signal values xk, the signal’s z-transform is:

X (z) =
∞∑

k=0
xkz−k

(Sometimes, the summation starts at k = −∞, depending on if the signal can extend
‘into the past’.) One might wonder why z is raised to the negative power instead. Well,
one of the reasons is because it maps the frequency spectrum of the signal to the unit
circle in the z-plane:

X(ω) = X (eiω)

In a nutshell, this is because substituting z = eiω turns the definition of X into a
Discrete-time Fourier transform computation. However, this is a whole ‘nother can of
worms!
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